MATHEMATICS SPECIALIST

MAWA Semester 1 (Unit 3) Examination 2017

Calculator-free

Marking Key

© MAWA, 2017

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 8 of term 2, 2017

CALCULATOR-FREE SEMESTER 1 (UNIT 3) EXAMINATION

Section One: Calculator-free

(52 Marks)

Question 1(a)

Solution	
$z_1 = i$, $z_2 = 2 - 3i$ and $z_3 = a - i$	
\Rightarrow (i) $z_1 - z_2 = i - (2 - 3i) = i - 2 + 3i = -2 + 4i$	
(ii) $z_3 \overline{z_2} = (a-3i) \times (2+3i) = 2a+3ai+6i+9 = 2a+9+3(a+2)i$	
(iii) $\frac{z_1 z_2}{z_3} = \frac{3+2i}{a-i} \times \frac{a-i}{a-i} = \frac{3a-3i+2ai+2}{a^2+1} = \frac{3a+2+(2a-3)i}{a^2+1} = \frac{3a+2}{a^2+1} + \frac{(2a-3)i}{a^2+1} = \frac{3a+2}{a^2+1} = \frac{3a+2}{a^2+1} + \frac{3a+2}{a^2+1} = 3$	<u>i</u>
Marking key/mathematical behaviours	Marks
(i)	
• Determines $z_1 - z_2 = -2 + 4i$	1
(ii)	
• Determines $\overline{z_2}$ and multiplies $z_3\overline{z_2}$	1
• Expresses the result in the form $a+bi$	1
(iii)	
• Indicates the need to multiply $\frac{z_1 z_2}{z_3}$ by $\frac{z_3}{z_3}$	1
Multiplies this correctly	1
• Re-arranges in the form $a+bi$	1

 \rightarrow Re(z)

Solution Im(z) \uparrow 12 10 8 6 4 w 🖕 2 -6 -4 -2 -2 -12 -10 -8 10 12 2 6 8 4

 \mathbf{e}_q

-4 -6

• k _8

Question 2(a)

Solution	
$z = 6 \times cis\left(\frac{\pi}{3}\right) = 6\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right) = 6\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 3 + 3\sqrt{3}i$	
Marking key/mathematical behaviours	Marks
 substitutes the correct exact values into cis 	1
simplifies correctly	1

Question 2(b)

Solution		
$z^{4} = \left(6 \times cis\left(\frac{\pi}{3}\right)\right)^{4} = 6^{4}\left(cis\left(\frac{4\pi}{3}\right)\right) = 6^{4}\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 2^{3}3^{4}(-1 - \sqrt{3}i) = 648(-1 - \sqrt{3}i)$		
Marking key/mathematical behaviours	Marks	
applies de Moivre's theorem	1	
substitutes exact values	1	
simplifies	1	

Question 2(c)	
Solution Im(z)	
$Im(z) \ge \frac{1}{2} Re(z) - 2 \text{ and} (Re(z) - 2)^2 + (Im(z))^2 < 16$	> Re(z)
Marking key/mathematical behaviours	Marks
 Correctly states inequation for half plane above the line 	1
 Correctly states the inequality of the circular region 	1
 Indicates that it is the intersection of the two regions (ie uses "and") 	1
 Indicates the boundaries correctly by using the appropriate symbol within each inequation 	1

Question 3(a)

Solution	
$\sqrt{2x-2}$	
$x \ge 1$	
$y \ge 0$	
Marking key/mathematical behaviours	Marks
determines expression	1
states domain	1
 states range 	1

Question 3(b)

Solution	
$f \circ g(x) = \sqrt{2x - 2}$	
$x \ge 1$	
$y \ge 0$	
Marking key/mathematical behaviours	Marks
determines expression	1
states domain	1
 states range 	1

Question 3(c)

Solution	
$h(x) = 3(x-2)^2 - 1$	
$y \ge -1$	
Marking key/mathematical behaviours	Marks
 rewrites function in turning point form 	1
states range	1

Question 3(d)

Solution	
$h(x) = 3(x-2)^2 - 1$	
Restricted domain: $x \le 2$	
$y = 3(x-2)^2 - 1, \qquad x \le 2, y \ge -1$	
$x = 3(y-2)^2 - 1, \qquad y \le 2, x \ge -1$	
$\left(y-2\right)^2 = \frac{x+1}{3}$	
$y = 2 - \sqrt{\frac{x+1}{3}}, \qquad y \le 2$	
$h^{-1}(x) = 2 - \sqrt{\frac{x+1}{3}}$	
Marking key/mathematical behaviours	Marks
restricts domain correctly	1
• swaps x and y	1
• solves for $(y-2)^2$	1
determines the correct inverse rule	1

Question 4

Solution	
$x = -3$, $x = 1$ are asymptotes: $f(x) = \frac{ax+b}{(x+3)(x-1)}$	
$f(0) = 2:$ $\frac{b}{-3} = 2$ \Rightarrow $b = -6$	
$f(-1)=2:$ $\frac{-a-6}{-4}=2$ \Rightarrow $a=2$	
$f(x) = \frac{2x-6}{(x-1)(x+3)}$	
Marking key/mathematical behaviours	Marks
 states values of c and d 	1
states value of b	1
 states value of a 	1

Question 5(a)

Question 5(b)

Question 5(c)

7

Solution $y = f(\mathbf{x})$ $y = f^{-1}(x)$ 2 \leftarrow > x-2 4 2 4 2 4 $\overline{\mathbf{v}}$ Marking key/mathematical behaviours Marks sketch of inverse appears as a reflection in the line y = x1 • shows correct end-point of (-2,0) and indicates continuation past x = 51 sketch has a reasonably accurate shape (ie. crosses f(x) at roughly the 1 correct spot)

Question 6(a)

Question 6(b)

Solution		
EITHER, uses point of intersection fro	m graph, $x \approx 1.3$	
OR, solves algebraically,		
$2x^2 - 2 = x$		
$\Rightarrow \qquad 2x^2 - x - 2 = 0$		
$\Rightarrow \qquad \qquad x = \frac{1 + \sqrt{17}}{4}, \ x \ge -$	-2	
Marking key/mathematical behaviour	rs	Marks
EITHER	OR	
 uses point of intersection 	establishes equation to solve	1
• states value near 1.3	states value	1

Question 7(a)

Solution $\begin{array}{rcrcrcrcrc} x+3y-2z &=& 3 \\ 4x+14y-3z &=& 19 \\ \leftrightarrow & 2y+5z \\ \end{array} \begin{array}{rcrcrc} x+3y-2z &=& 3 \\ 2y+5z &=& 7 \\ \leftrightarrow & 2y+5z \\ \end{array} \begin{array}{rcrc} x+3y-2z &=& 3 \\ 2y+5z &=& 7 \\ \end{array}$	
3x + 12y + 2z = 21 $3y + 8z = 12$ $z = 3$	
So $z = 3$, and back-substitution gives $y = -4$ and $x = 21$.	
Marking key/mathematical behaviours	Marks
systematically eliminates variables	1
• solves for z	1
• solves for y and x	1

Question 7(b)

Solution	
x + 3y - 2z = 3 $x + 3y - 2z = 3$	
$4x + 14y - 3z = 19 \iff 2y + 5z = 7$	
3x + 12y + az = b $3y + (a + 6)z = b - 9$	
x + 3y - 2z = 3	
\Leftrightarrow $2y + 5z = 7$	
(2a-3)z = 2b-39	
Infinitely many solutions when last equation reduces to $0z = 0$,	
i.e. $a = 1.5$ and $b = 19.5$	
Marking key/mathematical behaviours	Marks
systematically eliminates variables	1
 uses the condition for infinitely many solutions 	1
• solves for a and b	1